Vertex Subsets with Minimal Width and Dual Width in $Q$-Polynomial Distance-Regular Graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Subsets with Minimal Width and Dual Width in Q-Polynomial Distance-Regular Graphs

We study Q-polynomial distance-regular graphs from the point of view of what we call descendents, that is to say, those vertex subsets with the property that the width w and dual width w∗ satisfy w+w∗ = d, where d is the diameter of the graph. We show among other results that a nontrivial descendent with w > 2 is convex precisely when the graph has classical parameters. The classification of de...

متن کامل

Width and dual width of subsets in polynomial association schemes

The width of a subset C of the vertices of a distance-regular graph is the maximum distance which occurs between elements of C. Dually, the dual width of a subset in a cometric association scheme is the index of the “last” eigenspace in the Q-polynomial ordering to which the characteristic vector of C is not orthogonal. Elementary bounds are derived on these two new parameters. We show that any...

متن کامل

On bipartite Q-polynomial distance-regular graphs

Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set X, diameter d ≥ 3 and valency k ≥ 3. Let RX denote the vector space over R consisting of column vectors with entries in R and rows indexed by X. For z ∈ X, let ẑ denote the vector in RX with a 1 in the z-coordinate, and 0 in all other coordinates. Fix x, y ∈ X such that ∂(x, y) = 2, where ∂ denotes path-length distance...

متن کامل

Almost-bipartite distance-regular graphs with the Q-polynomial property

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2011

ISSN: 1077-8926

DOI: 10.37236/654